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Abstract

Near saturation steam undergoing rapid expansion, with homogeneous nucleation of water droplets, is numerically

studied in a series of converging/diverging nozzles with and without shocks. To understand loss mechanisms in such

flows a numerical model is presented to calculate thermodynamic losses, which is further used to quantify associated

total aerodynamic losses. For the converging/diverging nozzle configuration, the model shows that the overall ther-

modynamic loss is only mildly influenced by increasing shock strength, while the aerodynamic losses follow that of the

single phase flow, and are of the same magnitude as the thermodynamic loss only in the case of very weak shocks. The

thermodynamic losses can be attributed to two influences, the homogeneous nucleation event, and the post-shock

thermal oscillations in the two-phase system. The calculations rely on a new two-phase CFD model, previously re-

ported, for non-equilibrium phase change with droplet nucleation applicable to general 3D flow configurations.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the design of industrial equipment utilizing fluid

flow, obtaining a high efficiency of operation of the flow

path often has a direct impact on the profitability of a

plant. A loss in efficiency corresponds to a loss in the

ability to do useful work, and for some devices, such as a

steam turbine for example, this loss can accumulate over

the run of a year into a significant impact on profit-

ability. Assessing the mechanisms that lead to loss in

available work is particularly difficult in highly com-

pressible multiphase flows as found, for example, in the

low-pressure end of a multistage steam turbine. In these

transonic flows losses originate from interactions at

boundaries (boundary layers), discontinuities in the flow

properties (shocks), irreversible heat transfer associated

with phase change, and losses generated with slip be-

tween different phases in the flow. To be able to quantify

these losses and make appropriate design changes is a

difficult task, particularly in highly three-dimensional

(3D) flows. To assist in this objective a number of re-

searchers have developed computational-fluid-dynamics

models to be used in understanding these flows. A

popular approach has been the methods based on in-

viscid time-marching schemes such as that presented

in [1,2], however these have been limited to 2D cases

and to very small droplet sizes. Recently another ap-

proach was developed by Gerber as reported in [3] based

on the full Navier-Stokes equations and the use of in-

terphase source terms to handle the interaction between

phases. This approach was applied to 2D and 3D sys-

tems and is expandable to large droplet sizes where slip

is present.

Experimental investigations have been undertaken to

quantify the thermodynamic losses prevalent in tran-

sonic flows with phase change in steam systems [4,5].

The experimental work focused on flows in steam tur-

bine blading and had the important aim of providing

validation for the CFD models under development. Pre-

dictions of entropy generation due to non-equilibrium
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heat transfer with nucleation have not been performed

earlier in the context of a two-phase Eulerian–Lagran-

gian model.

The present paper investigates transonic condensing

turbulent flows in 2D converging–diverging nozzles, and

presents a model for quantifying the aerodynamic,

Nomenclature

A area (m2)

cp liquid particle specific heat or vapor specific

heat at constant pressure (J/kgK)

cv vapor specific heat at constant volume (J/

kgK)

d diameter (m)

H vapor total enthalpy (J/kg)

h static enthalpy (J/kg)
�hh average static enthalpy (J/kg)

J nucleation rate (# droplets/m3 s)

k thermal conductivity (W/mK)

K Boltzmann�s constant (¼ 1:3807� 10�23 J/

K)

Kn Knudsen number (¼ l̂l=d)
l local latent heat (¼ hg � hp) (J/kg)
L equilibrium latent heat (¼ hfg) at local

pressure (J/kg)

l̂l molecular mean free path (m)

m mass (kg), mass of one molecule of water

(kg), or counter for droplet numbers

M Mach number or overall number of droplet

groups

_mm mass flow rate (kg/s)

n counter for droplet time steps

N overall number of time steps

_nn droplet flow rate (# droplets/s)

Nu Nusselt number (¼ ad=k)
P pressure (N/m2)

Pr Prandtl number (¼ lcp=k)
q conductive heat flux (W/m2)
_QQ heat flow rate (W)

r droplet radius (m)

r� droplet critical radius (droplet radius at

nucleation) (m)

R gas constant (¼ 461.4 J/kgK)

Sh source term for energy equation (W/m3)

Sm source term for mass equation (kg/m3 s)

Su source term for momentum equation (N/m3)

t time (s)

T temperature (K)

u velocity (m/s)

V average velocity of droplet (m/s) (Fig. 2)

Vol volume of a single control volume (m3)

x spatial dimension (m)

Greek symbols

a convective heat transfer coefficient (W/

m2 K)

b empirical adjustable parameter for droplet

growth (Eq. (11) and Fig. 3)

c vapor specific heat ratio (�1.32)

dmp mass growth of droplet (kg) (Fig. 2)

dQ heat crossing the boundaries of Regions 1–3

(J) (Fig. 2)

d _qq heat flow rate of droplet group (¼ _nndQ) (W)

dt time step (s) (Eq. (2) and Fig. 2)

DS entropy rise (J/K)

DT supercooling level (¼ Tsat � Tg) (K)

� turbulent dissipation (m2/s3)

g correction parameter (Eq. (5))

j turbulent kinetic energy (m2/s2)

l dynamic viscosity (kg/m s)

m Nusselt correction (Eq. (9))

q density (kg/m3)

r liquid surface tension (N/m)

_rr entropy generation rate (W/K) (Eq. (27))

s stress (N/m2)

X surface tension ratio (¼ r=rb) (Fig. 3)

Subscripts

0 total state condition

1–3 Regions 1–3 (Fig. 2)

ae aerodynamic losses

av used for temperature averaging

b tabulated value of surface tension or back

pressure value

CD computational domain

f frozen Mach number (Fig. 14) or fluid

property

g gas (vapor)

ij tensor notation

in inlet condition

N nucleation location (Figs. 8 and 9)

p droplet

sat saturated state

t imaginary ‘‘throat’’ following separation

(Figs. 8–10)

th thermodynamic losses

Superscripts

E equilibrium

NE non-equilibrium
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thermodynamic and total losses present. The calcula-

tions utilize the model of Ref. [3], and it is anticipated

that the procedures developed are general and applicable

to the more complex two-phase flow behavior found in

devices such as steam turbines.

2. Mathematical modeling

The mathematical model developed for condensing

steam relies on an Eulerian–Lagrangian representation

of the two phase system. The two phases (vapor and

liquid droplets) are treated as two independent flows,

with the interaction between the phases applied through

the source terms included in the continuity, momentum

and energy equations of the vapor phase.

2.1. Eulerian (continuum) phase

The governing equations for the gas phase, referred

to as the Eulerian phase, are:

oq
ot

þ o

oxj
ðqujÞ ¼ Sm;

oqui
ot

þ o

oxj
ðqujuiÞ ¼ � oP

oxi
þ osij

oxj
þ Sui ;

oqH
ot

� oP
ot

þ o

oxj
ðqujHÞ ¼ � oqj

oxj
þ o

oxj
ðuisijÞ þ Sh;

ð1Þ

where q, ui, P , H , q and s denote gas phase conditions of
density, i-wise velocity component, pressure, total

enthalpy, conductive heat flux and shear stress respec-

tively. The source terms Sm, Sui , and Sh contain the terms

describing the mass, momentum and energy exchange

between the phases, which are determined from:

Sm ¼ 1

Vol

XM
m

XN
n

ð _mmpÞtþdt
mn

h
� ð _mmpÞtmn

i
;

Sui ¼
1

Vol

XM
m

XN
n

ð _mmpuipÞ
tþdt
mn

h
� ð _mmpuipÞ

t
mn

i
;

Sh ¼
1

Vol

XM
m

XN
n

ð _mmphpÞtþdt
mn

h
� ð _mmphpÞtmn

i
;

ð2Þ

where the summations are over all, M , liquid droplet

groups, each taking N time-steps to sweep the extent of a

control volume. It is noted that the droplet integration

time-step is independent of the gas phase time-step for

the present steady state computations. In Eq. (2) the

droplet enthalpy, hp, is comprised of the bulk internal

energy, the surface energy associated with a spherical

droplet, and kinetic energy (complete details are avail-

able in [3]).

Turbulence is modeled via the standard j–� model

[6]. The source terms in the j–� equations do not con-

sider the influence of the liquid droplets on turbulence

conditions. However, this effect is indirectly modeled via

the velocity field introduced to the j–� equations in each

iteration. This is assumed adequate for droplets of sub-

micron in size.

2.2. Equation-of-state

The study of non-equilibrium thermodynamics (in

the context of high-speed compressible flows) involves

conditions of supercooled states, and an equation of

state reliable for extrapolation into supercooled condi-

tions must be utilized. In the present work the equation-

of-state reported in [7] is used, which was tested for

extrapolation into supercooled states [8]. This equation-

of-state, utilizing a virial formulation, is reliable for

both high and low pressure conditions ranging from

0.01 to 100 bar, and over a temperature range of

273.15–1000 K. While the present study will be limited

to cases at low pressure (below 1 bar), the model is in-

tended for application at high pressures as well and

therefore a more extensive equation of state was imple-

mented. The virial equation of state along with relations

for vapor pressure, liquid density and specific heat data

(described more fully in a previous study [9]) provides

the basis for calculating all properties required in the

simulations, for both equilibrium and supercooled

states.

2.3. Lagrangian (dispersed) phase

The liquid phase is introduced into the flow on the

basis of classical nucleation theory as described in [10],

and once present, the trajectory of the droplets are de-

termined on the basis of a Lagrangian motion model. In

the present study all droplets are assumed to be small

(<1 lm) having formed by homogenous nucleation. This

allows a no slip condition to be imposed between vapor

and droplet. That is, the droplet motion is determined

solely by the gas (vapor) phase. The size of the droplet

introduced into the flow is the critical radius calculated

as [10]:

r� ¼ 2rTsatðPÞ
qfLDT

; ð3Þ

where r is the surface tension, TsatðP Þ, saturation tem-

perature at the local pressure, qf , density of the liquid

droplet, L, equilibrium latent heat, and DT , the super-

cooling level (¼ TsatðP Þ � Tg; in which Tg is the gas

temperature). The number of droplets associated with a

droplet group integrated through the flow domain is

calculated from the nucleation rate as:

J ¼ 1

1þ g
2r
pm3

� �1=2 q2
g

qf

exp

�
� 4pr�2r

3KTg

�
; ð4Þ
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where g is defined by:

g ¼ 2
c � 1

c þ 1

L
RTg

L
RTg

�
� 1

2

�
ð5Þ

and qg is the gas (vapor) phase density, K, the Boltz-

mann�s constant, m, the mass of one water molecule, R,
the gas constant, and c, the specific heat ratio (�1.32).

The droplet once released into the flow grows

through heat, mass and momentum transfer with its

surrounding vapor. To calculate the source term con-

tributions to the gas phase equations (Sm, Sui and Sh)
an energy equation for the droplet phase must be

solved. This solution, on a single droplet basis, provides

information on the growth of a droplet in either a

supercooled or superheated environment. The energy

equation is based on modeling latent heat require-

ments with phase change, convective heat transfer into

or away from the liquid droplet, and the temperature

change of the liquid droplet. This is described by the

equation:

l
dmp

dt
¼ apApðTp � TgÞ þ mpcp

dTp
dt

; ð6Þ

where mp is the mass of one liquid droplet (¼ 4=3qfpr
3
p,

in which rp is the radius of the liquid droplet), cp, the
specific heat of the liquid droplet, ap, the convective heat

transfer coefficient between a liquid droplet and its

surroundings, Ap, the area of one liquid droplet

(¼ 4pr2p), and l is the local latent heat (¼ hg � hp).
For the present calculations, where all droplets re-

main very small (<1 lm), the contribution of the internal

energy term in Eq. (6) can be ignored. Therefore, Eq. (6)

reduces to:

ðhg � hpÞ
dmp

dt
¼ apð4pr2pÞðTp � TgÞ ð7Þ

or

ðhg � hpÞ
drp
dt

¼ apðTp � TgÞ ð8Þ

with the unknowns rp and Tp. The heat transfer coeffi-

cient ap is determined from the Nusselt number [11]:

Nu 	 apdp
kg

¼ 2

1þ 3:78ð1� mÞKn=Prg
; ð9Þ

where kg is the thermal conductivity of gas (vapor), dp,
the diameter of a liquid droplet (¼ 2rp), Prg, the gas

Prandtl number, and Kn, the Knudsen number defined

by Kn 	 l̂l=dp, in which l̂l is the mean free path of the gas

molecules defined by:

l̂l ¼ 1:5lg

ffiffiffiffiffiffiffiffi
RTg

p
=P ; ð10Þ

where lg is the dynamic viscosity of the gas. In Eq. (9),

ð1� mÞ is a correction factor suggested in [12]:

m ¼ RTsatðP Þ
L

b

�
� 1

2
� 1

2

c þ 1

2ðc � 1Þ

� �
RTsatðP Þ

L

� �	
; ð11Þ

where b is an empirical adjustable parameter. Solving

Eq. (8) requires additional information to relate rp and

Tp. This would normally be done through a mass con-

servation equation. However, a simple algebraic equa-

tion, useful for steam is used to obtain the liquid droplet

temperature [11]:

Tp ¼ TsatðPÞ � ½TsatðP Þ � Tg�
r�

rp
: ð12Þ

The preceding describes the governing equations

applied to the nucleation and subsequent growth of the

liquid droplet phase. The sequencing of these equations

in conjunction with the gas phase equations follows the

strategy:

1. The supercooling levels in the flow field

(DT ¼ TsatðP Þ � Tg) are calculated from the latest

gas phase solution.

2. Based on supercooling levels the nucleation rate is

calculated from Eq. (4) at every location in the flow

domain.

3. At locations in the flow with significant nucleation

(J > 1015) a droplet group is introduced into the flow

representative of numerous liquid droplets.

4. Integration of the droplet using the growth equations

(Eqs. (8) and (12)) and the latest velocity field allows

for the gas phase source terms to be computed.

5. The gas phase equations are then solved (Eq. (1))

using the calculated source term contributions from

the droplet phase (repeat of step 1).

6. The entire procedure is repeated until steady-state

behavior is reached.

Considerable detail is embodied in the above solution

steps and the reader can refer to [3] if interested. In

the present case the droplet integration also allows

for the irreversible entropy rise, due to temperature

differences between the phases, to be calculated. In a

subsequent section a model to calculate this irrevers-

ibility will be presented and is the main contribution of

this paper.

2.4. Boundary conditions

All calculations in the current study were performed

on a series of nozzle geometries ((A), (B), (C) and (D)) as

depicted in Fig. 1. The geometry of the expansion por-

tion of these nozzles were taken to be the same as those

used in the experiments of Moore et al. [13]. The

boundary conditions specified in the calculations and the

assumptions made were as follows:

• At the nozzle inflow, subsonic flow was specified us-

ing total pressure (P0in ), total temperature (T0in ) and
flow angle normal to the inlet plane. In addition a
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turbulent intensity of 5%, and an eddy length scale

of 7.5% of the nozzle inlet diameter were used.

• At the wall a no-slip adiabatic wall condition was

used and it was assumed that the liquid droplets,

upon impact with the wall, were reflected back into

the flow with a coefficient of restitution equal to 0.1.

• Assuming that the flow is symmetrical about the noz-

zle centerline, symmetry conditions were enforced for

all flow variables along this plane.

• At the exit plane, either supersonic or subsonic out-

flow conditions were applied. For supersonic out-

flow, all of the flow parameters were extrapolated

from the interior of the domain to the exit plane.

For subsonic outflow, pressure at the exit plane (back

pressure (Pb)) was specified and the rest of the flow

parameters were extrapolated from the interior of

the domain.

2.5. Thermodynamic losses evaluation

The prevailing feature in a non-equilibrium flow is

that the temperature of the phases differ. This difference

in temperature is the source of irreversible heat transfer

between phases. Subsequently, the entropy operation

rate throughout the flow field becomes relatively sub-

stantial and is usually referred to as thermodynamic

losses.

In the current study, the entropy rise associated with

thermodynamic loss is calculated from the Lagrangian

tracking model. In this approach particles are tracked

throughout the computational domain and any associ-

ated entropy rise during the journey of particles are

accumulated so that total entropy rises are evaluated.

Fig. 2(top) shows a traveling liquid droplet in a

continuum media of vapor, undergoing a continuous

condensation process. In this figure, a liquid droplet

travels the distance V dt along the vapor streamline. It is

noted that V is the droplet average velocity within the

time step dt (taken to be equal to that of the vapor in the

present computation for small droplets, in which slip

velocity is ignored). The enthalpy of the vapor phase, hg,
is assumed to be constant over the time step dt. How-

ever, an average enthalpy for the droplet, �hhp, is obtained
over the time step dt.

To obtain a formula for the losses associated to ir-

reversible heat transfer between the phases the system of

liquid droplet and vapor is divided into three regions, as

shown in Fig. 2(top). Regions 1 and 3 are respectively

pure liquid and vapor, and remain the same phase

throughout the condensation process (i.e. within the

time step dt). However, the fluid layer of Region 2, is at

first vapor and at the end of the time step is totally liquid

(see Fig. 2(top)). As liquid is created it is added to Re-

gion 1, so at the end of the time step the vapor volume of

Region 2 is zero. The state of the fluid in Region 2 is

always on average of that in Regions 1 and 3.

Droplet Trajectory

V    tδ

(2):  Vapor Layer

(1): Liquid Droplet

(1): Original Liq. Droplet

(2):  Added Condensate Layer

(3): Vapor

t +    tδ

Q     t

t

g

δ

δ

Droplet Trajectory

Q     tp

.

.

Fig. 2. (Top) Schematic of a liquid droplet, growing by con-

densation along its trajectory within the time step dt. (Bottom)

The representation of latent heat release toward liquid droplet

and/or vapor in a condensation process.

X (m)
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0.072
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0.075
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A
,
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B
,Y

C
o

r
Y

D
(m

)

Fig. 1. Geometry of four different nozzles (A), (B), (C) or (D)

used in the current studies.
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To condense the vapor layer in Region 2, the latent

heat associated with this layer, i.e. dmpðhg � �hhpÞ, should
be released toward the liquid (Region 1) and/or vapor

(Region 3), i.e.

dmpðhg � �hhpÞ ¼ _QQgdt þ _QQpdt ð13Þ

as shown in Fig. 2(bottom). In Eq. (13), _QQp and _QQg are

the heat flow rates toward liquid droplet and vapor,

respectively, and dmp is the mass of fluid layer in Region

2. It is noted that Eqs. (6) and (13) are equivalent rep-

resentation for the latent heat removal from the con-

densing layer, flowing toward liquid droplet and/or

vapor, if Eq. (6) were integrated in time.

The entropy generation for a system consisting of

Regions 1–3 is denoted by DSth:

DSth ¼ DS1 þ DS2 þ DS3; ð14Þ

where DS1, DS2, and DS3 are the entropy generation

within dt in Regions 1–3, respectively:

DS1 	 ðStþdt � StÞ1; ð15Þ

DS2 	 ðStþdt � StÞ2; ð16Þ

DS3 	 ðStþdt � StÞ3: ð17Þ

It is noted that the whole system containing Regions

1–3 are in a thermally non-equilibrium condition, how-

ever, we assume each individual phase is in equilibrium,

undergoing an internally reversible process. Under this

assumption the thermodynamic relation

DS ¼ dQ
T

� �
internally reversible

ð18Þ

could be used for each of the Regions 1–3:

DS1 ¼
_QQpdt

T p

; ð19Þ

DS2 ¼ � dmpðhg � �hhpÞ
Tav

; ð20Þ

DS3 ¼
_QQgdt
Tg

; ð21Þ

where Tav is the average temperature of the fluid layer in

Region 2, which is bounded by the liquid temperature T p

and the vapor temperature Tg. In general the tempera-

ture difference between liquid and vapor is of the order

of 101 in the rapid condensation zone, and 100 in the

quasi-equilibrium conditions following this. To simplify

the analysis either Tg or T p can be used for Tav with a

small loss in accuracy. This assumption must be recon-

sidered for larger droplet sizes (over 1 lm in size), since

the temperature deviations between vapor and liquid

can become even larger in a supercooled environment.

In this paper Tav is set to Tp so that combining Eqs. (13),

(14) and (19)–(21) we obtain:

DSth ¼ dmpðhg
h

� �hhpÞ � _QQpdt
i 1

Tg

�
� 1

T p

�
: ð22Þ

Eq. (22) gives the entropy rise associated with a single

droplet traveling the time interval dt.
Along a streamline over which a droplet group is

tracked there is a known rate of droplets transported ( _nn),
so that where mp appears we can apply _nnmp ¼ _mmp (note

that a droplet group represents a large number of indi-

vidual droplets associated with nucleation––see Step 3 in

Section 2.3). Multiplying _nn into Eq. (22), the entropy

generation rate for a droplet group along a streamline

become:

_nnDSth ¼ d _mmpðhg
h

� �hhpÞ � _nndQp

i 1

Tg

�
� 1

T p

�
; ð23Þ

where dQp 	 _QQpdt.
Tracking all of the liquid droplets and summing the

associated thermodynamic losses over all time steps:

DS
Dt

� �
th

¼
XM
m

XNCD

n

d _mmpðhg
h

� �hhpÞ � d _qqp
i
mn

� 1

Tg

�
� 1

T p

�
mn

; ð24Þ

where d _qqp ¼ _nndQp, NCD is the number of time steps from

the time a droplet group begins (at nucleation) until it

leaves the computational domain and M is the total

number of droplet groups.

Eq. (24) gives the entropy generation rate due to ir-

reversible heat transfer between the phases (i.e. ther-

modynamic losses as noted earlier). Eq. (24) was derived

for a condensation process, in which d _mmp is positive and

the temperature of liquid droplet is more than that of the

vapor, i.e. ð1=Tg � 1=T pÞ > 0. Therefore, for a con-

densing process it is guaranteed that ðDS=DtÞth > 0. For

an evaporation case, d _mmp is negative and ð1=Tg � 1=T pÞ
is also negative. This again guarantees ðDS=DtÞth > 0.

It is important to note that Eq. (24) is a general

equation, in the derivation of which, a portion of latent

heat is considered flowing toward the liquid droplet. Eq.

(24) can be simplified to a form similar to that developed

in [14] and applied in a mixture based single-phase ap-

proach, where the latent heat of the fluid layer of Region

2 was exclusively considered to move toward the vapor

phase (see Fig. 2(bottom)). Dropping the term _qqp in Eq.

(24) results in:

DS
Dt

� �
th

¼
XM
m

XNCD

n

d _mmpðhg
h

� �hhpÞ
i
mn

1

Tg

�
� 1

T p

�
mn

:

ð25Þ

However, this simplification overestimates the thermo-

dynamic losses, and furthermore, could lead to non-

physical evaluation of aerodynamic losses determined

from:
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DS
Dt

� �
ae

¼ _rr � DS
Dt

� �
th

; ð26Þ

since a negative value for aerodynamic losses could be

obtained in cases with small viscous losses. In Eq. (26), _rr
is the total entropy generation rate for an adiabatic

steady flow, throughout the overall computational do-

main, determined by

_rr ¼
X

_mmese �
X

_mmisi; ð27Þ

where se and si are mixture (liquid and vapor) properties

at the exit and inlet of the domain.

It is noted that as an advantage of the two-phase

Eulerian–Lagrangian approach, as adopted in the present

computation, direct computation of the term d _qqp in Eq.

(24) is possible via the source term of the energy equation,

Sh (see Eq. (2)) by simply setting d _qqp ¼ �ðdShÞðVolÞ. In-
tegrating over all the droplet groups and all the time steps

sweeping the extent of a control volume, one can obtain:

Sh ¼ �ð
PM

m

PN
n d _qqpÞ=ðVolÞ.

It should be emphasized that in non-equilibrium

modeling, in order to precisely estimate aerodynamic

losses using an equation similar to Eq. (26), an accurate

evaluation of thermodynamic loss is always necessary. It

will be shown later in this paper that the estimation of

thermodynamic loss can deteriorate about 10% (for the

geometry considered in this paper) by dropping of _qqp (or
d _qqp) in the evaluation of ðDS=DtÞth (see Figs. 13 and 14).

An assessment of Eq. (24) for use in Eq. (26) is per-

formed in Section 3.2.

2.6. Solution algorithm

The non-equilibrium condensation model, described

here and in [3], has been implemented by the authors

within the commercial CFD code CFX-TASCflow,

which provides the overall framework for the solution of

the hydrodynamic equations. This software is spatially

second-order accurate, and uses a finite-volume/finite-

element discretization approach. The solution of the

Eulerian equation set utilizes a coupled solution of the

momentum and mass equations along with multigrid,

resulting in a linear scaling in solution time with prob-

lem size (see Ref. [15]). The droplet integration scheme

(the Lagrangian part) is based on a first-order forward

Euler method.

3. Numerical validation

3.1. Comparison vs. experimental values in literature

Quantitative validation of the numerical model is

accomplished using four different geometries (labeled as

nozzles (A), (B), (C), and (D) in Fig. 1) based on the

experiments of [13]. The nucleation model used in this

paper has been applied widely for steam and exhibits a

strong sensitivity to the value of surface tension, r (see

Eq. (4)), and as suggested in the work of [13], some

numerical testing is required to obtain the best value.

Furthermore, to improve predictions at lower pressures

P < 0:4 bar, the model of [1] was used, which introduces

a further adjustable parameter b (see Eq. (11)) applied to

the droplet energy equation.

To establish acceptable values for X and b (X being

the surface tension ratio equal to r=rb, where rb is the

tabulated bulk surface tension), a systematic approach

has been taken to minimize errors. The approach in-

volves selecting a matrix of values for X and b to cover a

reasonable range for these parameters. A matrix of

calculations was then performed for nozzles (A) and (C)

using combinations of X and b. The computed centerline

pressure for each of the calculations was compared with

that of the experiment, obtained in [13], and an RMS

error between the computed results and experimental

values are calculated. For the matrix of calculations the

RMS errors are shown in Fig. 3 for both of the nozzles

(A) and (C). As shown in this figure the region of lowest

error for nozzles (A) and (C) overlap each other in the

vicinity of X ¼ 0:9 and b ¼ 5. The same values for X and

b are used for the two other nozzles, (B) and (D), and

the pressure distribution along the centerline are com-

pared with experimental values, as shown in Fig. 4. As it

is apparent in this figure, the final result is in excellent

agreement with experiment for all four nozzles. Fig. 5
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shows the distribution of droplet radius compared to

that of [13] given at a single location. The agreement of

computed droplet radius with experiment are reasonable

considering that there is still considerable uncertainty in

the measurement of droplet sizes at this scale. As a

further verification, the value of b obtained using this

procedure is consistent with the recommendation of [1].

3.2. Thermodynamic losses verification

Verification of the formula for thermodynamic los-

ses, derived in Section 2.5 and described by Eq. (24), is

performed on the basis of a self-consistency test between

non-equilibrium and equilibrium solution loss predic-

tions. To do this verification aerodynamic losses are

evaluated using two different physical models for the

energy exchange between the phases, namely: (i) thermal

non-equilibrium with interphase exchange as described

in the mathematical modeling section, and (ii) thermal

equilibrium where no Lagrangian solution is required

and the moisture content (wetness) is obtained from the

equilibrium phase diagram (and all properties are up-

dated according to standard mixture rules). It is ex-

pected that the aerodynamic losses obtained using the

physical models (i) and (ii) to be comparable if the mass

flows are the same.

In non-equilibrium flows the aerodynamic losses can

be evaluated using Eq. (26), while for the equilibrium

solution there is no thermodynamic losses because the

phases are in thermal equilibrium. Therefore, the aero-

dynamic losses of equilibrium flows are equal to the

total losses (for adiabatic and steady flows) so that,

DS
Dt

� �E

ae

¼ _rrE: ð28Þ

To properly compare the equilibrium and non-equi-

librium loss predictions it should be ensured that the

mass flow for the cases are same. Similar inflow

boundary conditions do not guarantee the same mass

flow through the nozzle since equilibrium condensation

may begin just before the throat. To obtain the same

mass flow for equilibrium and non-equilibrium cases, a

nozzle is chosen similar to that of [16], with boundary

conditions P0in ¼ 100 kPa, and T0in ¼ 413:15 K, and

supersonic outflow condition. Fig. 6 shows the nozzle
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geometry and profile of the wetness fraction along the

nozzle centerline, computed by equilibrium and non-

equilibrium models. As shown in this figure, condensa-

tion for both models occur downstream of the throat

and that the wetness of the non-equilibrium model

nearly recovers the equilibrium value, the difference

being due to the higher exit entropy level with a non-

equilibrium flow (for the same back pressure).

To test for physically realistic trends, the equilibrium

and non-equilibrium loss predictions are obtained for

two different wall boundary conditions: (a) with slip wall

conditions and (b) a case with no-slip wall conditions. In

case (a) the near wall viscous losses are eliminated and

therefore the predicted aerodynamic losses should drop

significantly. The predicted aerodynamic losses for the

cases (a) and (b) (in terms of W/K) are summarized in

Table 1.

The non-equilibrium aerodynamic loss predictions as

expected approach the equilibrium values but remain

slightly larger. The difference is attributed to the con-

densation shock, as shown in Fig. 7, which adds an

additional aerodynamic loss component similar to that

of a mild shock. From the theory for oblique shocks (see

Ref. [17] for example) an estimate of this loss can be

made and is of the same order as the values for the

predicted Dae. A direct comparison cannot be made be-

cause the Mach number profile across the nozzle (in

transverse direction) is not uniform as required by

classical theory for oblique shocks.

4. Results and discussions

4.1. Physical description of non-equilibrium steam flow

with and without shocks

To qualitatively describe the physics of non-equilib-

rium condensing steam flow, with or without shocks, a

sample of the calculated results for nozzle (A) are shown

in Figs. 8 and 9. The boundary conditions for these re-

sults were P0in ¼ 25 kPa and T0in ¼ 354:6 K at the inflow,

and either a supersonic outflow condition, or a specified

back pressure of Pb ¼ 16 kPa.

The computational grid used for the calculations was

based on a grid independence test, in which three dif-

ferent grid densities were examined: 60� 10, 100� 20,

and 180� 40. It was observed that the grid density

100� 20 can adequately capture the details of the flow,

and was used for all of the results presented.

In Fig. 8(a) the distribution of supercooling, DT ¼
TsatðP Þ � Tg, along the nozzle centerline is shown. With

significant supercooling spontaneous nucleation of liq-

uid droplets occurs at the nozzle location x ¼ xN . At this

location a significant amount of liquid droplets are

generated, approximately 1022 droplets per second per

unit volume (see Fig. 8(c)). The size at which the drop-

lets appear in the flow are generally of the order 10�10 m

and grow very rapidly by condensation of vapor on the

droplet surface. The distribution of wetness fraction and

droplet radius along the nozzle centerline is shown in

Fig. 8(b) and (d). At the nozzle location xN a sharp rise

in wetness fraction is observed, reflecting the rapid

growth of the droplets immediately following the peak

nucleation. Referring again to Fig. 8(a), it is shown that

after peak nucleation, the supercooling level rapidly

drops to near equilibrium conditions (DT � 1–2 K). This

near equilibrium condition prevails the remaining length

of the nozzle for the supersonic outflow case. It should

be noted that the small positive value of DT is a physical

requirement to support latent heat release toward the

Table 1

Comparison of aerodynamic losses using equilibrium and non-equilibrium models

Case _rrNE (Eq. (27)) ðDS=DtÞth (Eq. (24)) ðDS=DtÞNE

ae (Eq. (26)) ðDS=DtÞEae (Eq. (28)) Dae
a

a (slip wall) 0.7161 0.6900 0.0261 0.0247 0.0014

b (no slip wall) 1.4420 0.6768 0.7652 0.7000 0.0652

aDae ¼ ðDS=DtÞNE

ae � ðDS=DtÞEae.
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gas phase as condensation continues on the droplet

surfaces.

In the case with a normal shock, the flow conditions

upstream of the shock are, as expected, the same as

those for supersonic outflow case (in Figs. 8 and 9 the

lines for the supersonic- and subsonic-outflow cases

coincide up to the shock location). Through the shock

the supercooling level abruptly becomes negative (su-

perheated conditions) and liquid droplets rapidly evap-

orate in response to the rapid pressure and temperature

rise across the shock. Downstream of the shock, super-

cooling occurs again (with another peak point) due to

reacceleration of the flow around a recirculation bubble

generated as a result of shock impingement on the wall,

and boundary layer separation. This is shown in Fig. 10,

where the recirculation bubble takes on a shape similar

to a converging–diverging nozzle to the core flow with

its ‘‘throat’’ at location xt. In the case of a very strong

shock, the subsequent flow through this ‘‘nozzle’’ could

reaccelerate to supersonic flow conditions and revert

back to subsonic flow via a second shock, see for ex-

ample Ref. [18]. In the present case, the shock is not very

strong and the flow slightly accelerates up to the

‘‘throat’’ located at xt followed by deceleration with the

flow remaining always subsonic.

In the region between the shock and location xt,
wetness fraction and droplet size slightly increase as

shown in Fig. 8(b) and (d). For x > xt the decelerating

subsonic flow experiences a pressure rise, in which wet-

ness fraction reduces and liquid droplets evaporate to

smaller sizes (see Fig. 8(b) and (d)). As opposed to the

supersonic outflow case, the small negative value of DT
downstream of the shock is a physical requirement to

support heat movement toward the liquid phase as

evaporation continues on droplet surfaces (see Fig.

8(a)).

Fig. 9(a) shows the frozen Mach number distribution

(Mach number calculated based on dry phase condi-

tions) along the nozzle centerline, denoted by Mf . As

shown in this figure, dry flow smoothly accelerates

within the converging portion of the nozzle, passes the

sonic condition at the throat, and continues accelerating

up to Mf � 1:3, at which nucleation takes place at lo-

cation xN . Following the nucleation process, rapid re-

lease of latent heat toward the dry phase suddenly

reduces the frozen Mach number while increasing pres-

Fig. 8. Centerline values for supersonic and subsonic outflow cases of nozzle (A): (a) supercooling level, (b) wetness fraction, (c)

droplet nucleation rate, and (d) droplet radius.
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sure and the gas phase temperature as shown in Fig.

9(a), (b), and (d). This rapid response behaves similar to

a normal shock wave, and is often termed a condensa-

tion shock since it occurs in response to homogeneous

nucleation in a two-phase system. However, unlike a

normal shock, in which the post shock condition is

subsonic, in a condensation shock the post shock con-

dition could be sonic at most.

Fig. 9(c) shows the gas phase entropy distribution

along the nozzle centerline. As shown in this figure, no

entropy rise is observed along the centerline up to the

nucleation point. Following nucleation there is a sharp

rise in the gas phase entropy due to rapid release of la-

tent heat toward the gas phase. The gas phase entropy

grows with a slower rate as the flow approaches equi-

librium condition (DT ¼ 0þ) as shown in Fig. 8(a). For

the case with normal shock, the gas phase entropy de-

creases within the shock in response to evaporation of

the liquid phase, but the overall mixture entropy (not

shown here) rises across the shock.

4.2. Thermodynamic and aerodynamic losses in steam flow

with shocks

To examine the relative levels of the thermodynamic

and aerodynamic losses present in nucleating flow, with

Fig. 9. Centerline values for supersonic and subsonic outflow cases of nozzle (A): (a) frozen Mach number, (b) pressure, (c) dry phase

entropy, and (d) dry phase temperature.
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and without shocks, nozzle (A) is used (see Fig. 1). With

inflow conditions P0in ¼ 25 kPa and T0in ¼ 354:6 K re-

sults were obtained for a series of back pressures, where

for each back pressure the total and thermodynamic

losses were calculated.

Figs. 11 and 12 show the distribution of frozen Mach

number (Mf ) and the level of supercooling (DT ) along

the centerline of the nozzle for different back pressures.

Normalized mass averaged values of entropy rise

throughout the nozzle (normalized w.r.t. mass flow rate

and Cv ¼ 1430 J/kgK) are also shown in Figs. 13 and 14.

In these figures the solid-line represents total losses ob-

tained from Eq. (27), and the dashdot-line and dashed-

line represent the thermodynamic losses obtained from

Eq. (24) with and without _qqp ¼ 0, respectively. Aero-

dynamic losses (losses due to viscous effects and shocks)

are not directly calculated but are deduced from the

difference between the total loss and the thermodynamic

loss as depicted in Figs. 13 and 14. As described in

Section 2.5, assuming _qqp ¼ 0 ignores the fact that some

portion of latent heat of the condensing layer of Region

2 (see Fig. 2) flows inside the droplet itself, and raises the

temperature of the liquid droplet. This simplification

deteriorates the estimation of thermodynamic loss by
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10%, as shown in Figs. 13 and 14, and correspondingly

the evaluation of aerodynamic loss is underestimated.

As the back pressure decreases the normal shock

moves toward the nozzle exit, and the strength of the

shock increases. Therefore, the fluctuations in the su-

percooling field (DT ) following the shock increase (see

Fig. 12), contributing to the gradual increase in ther-

modynamic loss, as seen in Fig. 13. It should be noted

that a recirculation bubble downstream of the shock

(similar to that shown in Fig. 10) increases in size with

increasing strength in the shock, and contributes to the

post shock oscillations in the supercooling level. The

gradual increase in thermodynamic loss with reduced

back pressure begins from a base level of thermody-

namic loss associated with the homogeneous nucleation

of moisture. This level of loss is unaffected by the posi-

tion or strength of the normal shock located after the

nucleation zone. The aerodynamic losses however in-

crease rapidly with decrease in back pressure reflecting

the increased strength of the shocks and higher viscous

losses in the boundary layer.

5. Concluding remarks

Non-equilibrium condensing steam flow has been

numerically studied in a series of converging–diverging

nozzles from the perspective of quantifying loss mech-

anisms in such flows. A formula for the calculation of

thermodynamic loss in the context of a CFD solution

has been developed, which along with predicted total

flow losses, allows the total aerodynamic loss to be

calculated. The presented approach provides a means to

assess the relative influence of aerodynamic and ther-

modynamic losses in condensing flows when shocks are

present. Although the case of normal shocks in steam

devices such as turbines is not common, the approach

tested here is not limited to normal shocks and can be

applied to more general situations with oblique shocks

in turbines. The model highlights the fact that beyond

the initial thermodynamic loss associated with homo-

geneous nucleation, additional, but much smaller loss, is

associated with the perturbation of the two-phase tem-

perature field through a shock.

The magnitude of the aerodynamic losses (for the

converging/diverging nozzle studied) constituted 50–

80% of total losses depending on the strength of the

shock present in the flow conditions where the lower

contribution is associated with weaker shocks. It should

be mentioned that the results presented in this paper

assumes small sub-micron particles resulting from

homogenous nucleation. A complete analysis should

also include the effects of larger droplet sizes, which

introduce an additional loss due to inertial non-

equilibrium between the phases. Preliminary develop-

ment work has begun on this aspect of condensing flow

utilizing the multiphase model of Ref. [3], which allows

for slip conditions between the phases.
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